Efficient and Regioselective Cyanosilylation of Cyclohex-2-enone and Other Unsaturated Ketones over Solid Acid and Base Catalysts

Katsumi Higuchi, Makoto Onaka* and Yusuke Izumi*

Department of Synthetic Chemistry, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464, Japan

Cyanotrimethylsilane reacts with α , β -unsaturated ketones to afford 1,4- and 1,2-adducts regioselectively in the presence of strongly acidic montmorillonite and strongly basic CaO or MgO, respectively.

Cyanotrimethylsilane (Me₃SiCN) is widely used in organic synthesis instead of HCN.¹ Its addition to carbonyl compounds is usually catalysed either by Lewis acids such as ZnI_2^2 and AlCl₃³ or by anion catalysts like cyanide ion⁴ in the homogeneous liquid phase.

Recently, we reported that not only solid acids such as Fe^{3+} ion-exchanged montmorillonite (Fe^{3+} -Mont) but also solid bases such as calcium fluoride and hydroxyapaptite [Ca_{10} -(PO_4)₆(OH)₂] also promoted cyanosilylation of aldehydes and ketones to give the corresponding cyanohydrin trimethylsilyl ethers in good yields.⁵

We report herein that Me₃SiCN reacts with α , β -unsaturated ketones⁶ to give adducts regioselectively which depend on the use of a solid acid or a solid base: 1,4-adducts (silyl enol ethers) are obtained as Michael adducts in the presence of strong solid acids such as Fe³⁺-Mont and Sn⁴⁺-Mont, and 1,2-adducts (silyl ethers) are obtained in the presence of solid bases such as CaO and MgO.

A typical procedure is as follows. The solid catalyst (0.2–0.5 g) was dried at 0.5 Torr for 3 h at 120 °C for cation-exchanged montmorillonite, or 400 °C for hydroxyapatite. CaO and MgO were prepared from Ca(OH)₂ and Mg(OH)₂ by calcination at 500 °C and 0.5 Torr for 2 h. To a suspension of catalyst and solvent (1 ml) was added a mixture of cyclohex-2-enone (1 mmol) and Me₃SiCN (1.6 mmol) in the same solvent (2 ml) at a given temperature. The mixture was stirred under the conditions shown in Table 1, and the solid catalyst filtered off through a Celite pad. The products were obtained by distillation of the filtrate, and analysed by capillary GC (OV-1.25 m).

Results of the cyanosilylation of cyclohex-2-enone using various catalysts are shown in Table 1. Cyclohex-2-enone reacted with Me_3SiCN to afford three products: the 1,2-adduct 1, the 1,4-adduct 2 and the bis-adduct 3.

In the presence of Ni^{2+} -Mont, a relatively weak solid acid, the 1,2-adduct was produced predominantly (run 1). In

Table 1	1	Cyanosilylation	of	cyclohex-2-enonea
---------	---	-----------------	----	-------------------

		T 60	Yield (%)			
Run	Catalyst ^b	temp/C (t/h)	1 + 2	(1:2)	3	
1	Ni ²⁺ -Mont	0(0.3)	86	(61:39)	3	
2	Al ³⁺ -Mont	0(0.4)	78	(8:92)	8	
3	Fe ³⁺ -Mont	0(0.4)	84	(8:92)	5	
4	Sn ⁴⁺ -Mont	0(0.2)	73	(1:99)	16	
5	Sn4+-Mont/MS4A	0(0.2)	94	(0:100)	1	
6	ZnI_2	0(0.4)	90	(73:27)	1	
7	ZnI_2	40(6.0)	75	(4:96)	11	
8	CF ₃ SO ₃ SiMe ₃	0(0.4)	90	(74:26)	0	
9	CF ₃ SO ₃ SiMe ₃	40(8.0)	92	(66:34)	1	
10	Hydroxyapatite	-45(2.0)	86	(>99:1)	6	
11	MgO	-40(0.5)	80	(>99:1)	2	
12	CaO	-40(0.3)	87	(>99:1)	2	
13	KCN-18-Crown-6	25(2.0)	91	(97:3)	0.2	

^{*a*} Cyclohex-2-enone, 1 mmol; Me₃SiCN, 1.6 mmol; CH₂Cl₂ solvent for runs 1–9; PhMe for runs 10–13. ^{*b*} Cation exchanged montmorillonite, MS4A, MgO, CaO, 0.2 g; hydroxyapatite, 0.5 g; ZnI₂, CF₃SO₃SiMe₃, KCN–18-crown-6, 10 mol%.

contrast, the 1,4-adduct was obtained regioselectively in the presence of strong solid acids such as Al^{3+} -, Fe^{3+} -, and Sn^{4+} -Mont (runs 2, 3 and 4). This high regioselectivity may be explicable in terms of the rapid isomerization of the 1,2-adduct into the 1,4-adduct on the strongly acidic catalysts. Indeed, the 1,2-adduct (ratio 98:2) was converted into the 1,4-adduct (yield 92%, ratio 11:89) on Fe³⁺-Mont in the presence of Me₃SiCN at 0 °C for 1 h.

However, with the acid catalysts, the bis-adduct **3** was also produced as a by-product by further cyanosilylation of 3-cyanocyclohexanone formed through hydrolysis of the 1,4-adduct, caused by water contained in the interlayers of montmorillonite. Therefore, in order to suppress the hydrolysis of the 1,4-adduct, molecular sieve 4 Å was used as a drying agent along with Sn⁴⁺-Mont. The reaction was carried out after the powdered molecular sieve, pre-dried at 400 °C and 0.5 Torr for 1 h, had been stirred with dried Sn⁴⁺-Mont in CH₂Cl₂ for 1 h, whereby the yield of the 1,4-adduct was greatly improved (run 5).

In the presence of homogeneous catalysts (*e.g.* ZnI_2 and $CF_3SO_3SiMe_3$), the 1,2-adduct was produced predominantly under the same conditions (runs 6 and 8). The isomerization barely occurred at 0 °C. In the ZnI_2 -catalysed reaction, the 1,4-adduct was obtained selectively at a higher reaction temperature and longer reaction time owing to slow isomerization, compared with the Sn^{4+} -Mont-catalysed reaction (run 7). As for $CF_3SO_3SiMe_3$, the isomerization barely occurred even under reflux (run 9).

The 1,2-adduct was produced regioselectively in reactions using a solid base catalyst such as hydroxyapatite, CaO and MgO. Using basic catalysts, isomerization of the 1,2-adduct did not occur at -40 °C (runs 10, 11 and 12).

The results of cyanosilylation of various other α , β -unsaturated ketones are shown in Table 2. 4-Methylpent-3-en-2one and (*R*)-(-)-4,4a,5,6,7,8-hexahydro-4a-methylnaphthalen-2(3*H*)-one reacted with Me₃SiCN to give the 1,2- and 1,4-adducts regioselectively using solid base and solid acid, respectively. In the reaction of cyclopent-2-enone using CaO, the product was a complex mixture of the 1,2-, 1,4- and bis-adducts, because the 1,2-adduct was unstable. Benzylideneacetone, which has a bulky phenyl group at the 4-position, gave the 1,2-adduct predominantly even in the presence of strong acidic catalyst; *i.e.* isomerization was very slow.

Cyanosilylation of (R)-(-)4,4a,5,6,7,8-hexahydro-4amethylnaphthalen-2(3*H*)-one proceeded more quickly at

Table 2 Cyanosilylation of various α , β -unsaturated ketones

 Substrate	Catalyst	Solvent	Temp./°C (t/h)	Yield (%)	Ratio 1,2:1,4
	Fe ³⁺ -Mont/MS4A CaO	CH ₂ Cl ₂ PhMe	-10(0.7) -45(0.8)	84 Complex	2:98 mixture
Y Y	Fe ³⁺ –Mont/MS4A CaO	CH ₂ Cl ₂ PhMe	0(10) -40(0.7)	94 93	1:99 100:0
, , , , , , , , , , , , , , , , , , , 	Sn ⁴⁺ -Mont/MS4A CaO	CH ₂ Cl ₂ PhMe	-20(4) -40(2)	97 95	1:99 <i>ª</i> 100:0
Ph	Sn ⁴⁺ -Mont/MS4A CaO	CH ₂ Cl ₂ PhMe	0(0.2) -40(0.5)	97 97	>99:1 100:0

^{*a*} cis : trans ratio 28 : 72. Conventional methods: HCN-Et₃Al (tetrahydrofuran, 25 °C, 8 h), quant. yield, cis : trans 29 : 71;^{6e} Me₃SiCN-Et₃Al (PhMe, 25 °C, 20 h), quant. yield, cis : trans = 31 : 69.^{6d}

lower temperatures than conventional methods,^{6d,e} and the cis-trans ratio of the 1,4-adduct was almost the same as that obtained using conventional methods (Table 2 footnote).

Thus, solid acids and bases were found to be much more effective catalysts for regioselective cyanosilylation of α , β -unsaturated ketones, compared with ordinary homogeneous catalysts.

Received, 4th April 1991; Com. 1/01591E

References

1 Reviews: W. P. Weber, Silicon Reagents for Organic Synthesis, Springer-Verlag, Berlin, 1983, p. 6; W. C. Groutas, D. Felker, Synthesis, 1980, 861.

- 2 D. A. Evans, L. K. Truesdale and G. L. Carroll, J. Chem. Soc., Chem. Commun., 1973, 55; D. A. Evans, G. L. Carroll and L. K. Truesdale, J. Org. Chem., 1974, **39**, 914.
- 3 W. Lidy and W. Sundermeyer, Chem. Ber., 1973, 106, 587.
- 4 D. A. Evans and L. K. Truesdale, Tetrahedron Lett., 1973, 4929.
- 5 M. Onaka, K. Higuchi, K. Sugita and Y. Izumi, *Chem. Lett.*, 1989, 1393.
- 6 (a) D. A. Evans, J. M. Hoffman and L. K. Truesdale, J. Am. Chem. Soc., 1973, 95, 5822; (b) M. Samson and M. Vandewalle, Synth. Commun., 1978, 8, 231; (c) K. Utimoto, M. Obayashi, Y., Shishiyama, M. Inoue and H. Nozaki, Tetrahedron Lett., 1980, 21, 3389; (d) K. Utimoto, Y. Wakabayashi, T. Horiie, M. Inoue, Y. Shishiyama, M. Obayashi and H. Nozaki, Tetrahedron, 1983, 39, 967; Hydrocyanation: (e) W. Nagata and M. Yoshioka, Organic Reactions, 1977, 25, 255; (f) W. Nagata, M. Yoshioka and M. Murakami, J. Am. Chem. Soc., 1972, 94, 4654; 4672.